PROGRAMME DE COLLES DE CHIMIE PC*1

SEMAINE N°9: 1^{ER} AU 6 DECEMBRE

COURS

REVISIONS PCSI: STEREOCHIMIE (CONFORMATION ET CONFIGURATION)

CHAPITRE 2: ORBITALES MOLECULAIRES DES MOLECULES DIATOMIQUES

- I. Position du problème Hypothèses fondamentales
 - I.1 Approximation de Born Oppenheimer
 - I.2 Approximation monoélectronique ou orbitalaire
 - I.3 Méthode CLOA (ou LCAO)
- II. Interaction de deux OA identiques sur deux centres
 - II.1 Application à la molécule de dihydrogène
 - II.2 Densité de probabilité de présence
 - II.3 Représentation des OM
- III. Énergie des orbitales moléculaires
 - III.1 Molécules homonucléaires : interaction de 2 OA identiques
 - III.1.1 Niveaux d'énergie des OM
 - III.1.2 Remplissage des niveaux d'énergie des OM
 - III.1.3 Application aux molécules de la 1ère ligne du tableau périodique
 - III.2 Molécules hétéronucléaires : interaction de 2 OA différentes
 - III.2.1 Niveaux d'énergie des OM
 - III.2.2 Forme des OM
- IV. Recouvrement des orbitales atomiques
 - IV.1 Critère du recouvrement maximal
 - IV.1.1 Seules les orbitales de valence peuvent se recouvrir
 - IV.1.2 Seules les orbitales de mêmes étiquettes de symétrie peuvent se recouvrir
 - IV.2 Les deux types d'orbitales moléculaires
 - IV.2.1 OM σ : recouvrement axial d'OA
 - IV.2.2 OM π : recouvrement latéral d'OA
 - IV.2.3 Comparaison du recouvrement axial et du recouvrement latéral
- V. Application aux molécules diatomiques
 - V.1 Molécules diatomiques homonucléaires A₂
 - V.1.1 Principes de construction des diagrammes d'OM
 - V.1.2 Exemple de H₂
- → Le diagramme de H2 doit être connu par cœur
 - V.1.3 Molécules A₂ issues d'atomes de la deuxième ligne du tableau périodique
- \rightarrow Les diagrammes du cours O_2 , N_2 , F_2 , Cl_2 , doivent savoir être reconstruits sans indication et sans interaction s-p
- → La notion de diagramme corrélé/non corrélé est hors programme
 - V.2 Molécules diatomiques hétéronucléaires AB
 - V.2.1 Molécules de type AH
- → Le diagramme du cours HF doit savoir être reconstruit sans indication et sans interaction à 3 OA
 - V.2.2 Molécules de type AB avec A,B \neq H

→ Aucun diagramme à connaître dans cette catégorie

CHAPITRE 3: ORBITALES MOLECULAIRES DES MOLECULES POLYATOMIQUES

- I. Méthode des fragments
 - I.1 Principe
 - I.2 Choix de la fragmentation
- II. Application aux molécules AH₂
 - II.1 Diagramme d'OM de BeH₂ linéaire
 - II.2 Diagramme d'OM de H₂O coudée
 - II.3 Corrélation entre géométries
 - II.3.1 Exemple de H₂O
 - II.3.2 Exemple de BeH₂
- III. Application aux molécules AH₃
- IV. Étude de l'éthylène
 - IV.1 Diagramme d'OM de l'éthylène plan
 - IV.2 Géométrie de l'éthylène
 - IV.3 Système σ et système π
- V. Molécules planes conjuguées
 - V.1 Exemple du buta-1,3-diène
 - V.2 Décompte des électrons π
 - V.3 Stabilité d'un système π conjugué
 - V.4 Géométrie d'une molécule conjuguée
 - V.5 Conjugaison et effet bathochrome

TRAVAUX PRATIQUES

CCM (Fiche22)

Recristallisation (Fiche 27)

EXERCICES

Structure de la matière : chapitres 1 à 3

- → Pas d'exercice mettant en jeu les expressions analytiques des OA
- \rightarrow Chapitre 1 : privilégier des exercices autour des configurations électroniques et du tableau périodique
- \rightarrow Chapitre 2: seules constructions de diagramme *ex nihilo* autorisées: A₂ ou AB (en négligeant les interactions s-p); AH (sans interaction à 3 OA). Pour étudier d'autres cas, on donnera le diagramme déjà ou en partie construit
- → Chapitre 3: seule construction de diagramme complet *ex nihilo* autorisée: BeH₂ linéaire (traité en cours) ou équivalent; Pour étudier d'autres cas, on donnera le diagramme déjà ou en partie construit; dans tous les cas la fragmentation et les éléments de symétrie pertinents sont donnés; rien d'exigible sur une interaction à trois orbitales.

Révisions PCSI: stéréochimie (conformation et configuration)

→ Un exercice obligatoire sur ce thème si pas abordé en question de cours

Si nécessaire : révisions PCSI : structure de la matière (modèle de Lewis, méthode VSEPR, mésomérie, interactions non covalentes)

Rémi Le Roux